Direct Torque Control Based on Adaptive Neuro Fuzzy Inference System for Induction Motor Speed ​​Control

Authors

  • Tommy Nana Pradana PT. Amythas

DOI:

https://doi.org/10.30649/je.v5i2.126

Keywords:

Induction Motor, DTC (Direct Torque Control), ANFIS (Adaptive Neuro Fuzzy Inference System)

Abstract

Induction motors are the motors are widely used in the industrial world, in addition to relatively low prices, easy maintenance. This motor has a good Traffic on rotational speed. The weakness of this motor is at that point in the load torque, the motor speed will change. In writing this thesis discussed the induction motor speed control system with the method of DTC (Direct Torque Control) that can provide rapid response in the event of changes in the load torque so the motor stays on steady footing steate and will return position at setpoint quickly. To obtain performance speed control of three phase induction motors with the method of DTC (direct torque control) requires a good control system, meaning that the control system that can follow changes in speed (setpoint) quickly. Thus the speed control of three-phase induction motor using DTC (direct torque control) was developed using intelligence control ANFIS (Adaptive Neuro Fuzzy Inference System). The results of the simulation with Simulink shows that the controller ANFIS control induction motor speed does not load at start overshoot 0.7%, rise time of 1 second and setling time 1.1 seconds for a speed reference 1800 rpm, and when given the burden of 20nm overshooting 12:27% on the speed reference 1500rpm. By using Direct Torque Control (DTC) based Adaptive Neuro Fuzzy Inference System (ANFIS) were able to keep pace with the dynamic reference well and can suppress ripple down to a very low level.

References

A. Kurniawan, “Pengaturan kecepatan motor induksi tiga fasa dengan metode field-oriented control menggunakan kontrol logika fuzzy,” Skripsi, Surabaya: Program Studi Teknik Elektro Fakultas Teknik dan Ilmu Kelautan Universitas Hang Tuah, 2002.

B. Y. Dewantara, “Desain SVPWM Inverter Driver Sebagai Pengendali Kecepatan Motor 3 Fasa Berbasis Fuzzy Logic,” Skripsi, Surabaya: Program Studi Teknik Elektro Fakultas Teknik dan Ilmu Kelautan Universitas Hang Tuah, 2014.

D. Casadei, G. Serra, F. Profumo, A. Tani, “FOC and DTC: two variable scheme for induction motors torque control, IEEE Transactions On Power Electronics, Vol. 17, No. 5, 2002.

D. Casadei, G. Serra, A. Tani, L. Zarri, “Assessment of direct torque control for induction motor drives”, Buletin of the Polish academy of science tech. sciences, Vol. 54, No.3, 2006.

E. Wahjono, S. Soebagio, “Fuzzy Logic Direct Torque Control Untuk Motor Induksi Yang Digunakan Pada Kendaraan Listrik (Electric Vehicle),” Prosiding Seminar Nasional Aplikasi Teknologi Informasi (SNATI), 2009

Isdiyarto, ”Dampak Perubahan Putaran Terhadap Unjuk Kerja Motor Induksi 3 Phasa Jenis Rotor Sangkar,” Jurnal Kompetensi Teknik, Vol. 1, No. 2, 2010.

Jyh-S. R Jang, ANFIS: Adaptive-network-based Fuzzy Inference System. IEEE Transactions on Systems, Mans and Cybernetics, Vol. 23, No. 3, 1993.

Jyh-S. R Jang, “Neuro-Fuzzy Modeling: Architectures, Analyses, and Applications,” Disertasi, Berkeley: University of California, 1992.

M. A. Arifin, ”Perancangan Kontrol Logika Adaptif Fuzzy Dalam Pengaturan Kecepatan Motor Induksi Tiga Fasa,” Skripsi, Surabaya: Universitas Hang Tuah, 2013.

I. D. P. Karyatanti, B. Y. Dewantara, M. R. Hardiansyah, “Rancang Bangun Pengaturan Kecepatan Motor DC Menggunakan Metode Fuzzy Gain Scheduling PID Control,” ALINIER: Journal of Artificial Intelligence & Applications, Vol. 5, No. 1, 2024.

A. I. Ridhatullah, A. Joret, I. D. P. Karyatanti, A. Ponniran, “Three-Phase Induction Motor Speed Estimation Using Recurrent Neural Network,” Journal of Electronic Voltage and Application, Vol. 2, No. 2, 2021.

A. Rusmanegara, I. D. P. Karyatanti, “Simulasi Rancang Bangun Gridside Converter pada Double Fed Induction Generator Menggunakan Fuzzy Logic,” CYCLOTRON, Vol. 4, No. 2, 2021.

Downloads

Published

2023-11-01

How to Cite

Pradana, T. N. (2023). Direct Torque Control Based on Adaptive Neuro Fuzzy Inference System for Induction Motor Speed ​​Control. J-Eltrik, 5(2), 100–109. https://doi.org/10.30649/je.v5i2.126

Issue

Section

Articles