Deteksi Kerusakan Bearing secara Non-Invasive pada Kondisi Kecepatan Bervariasi
DOI:
https://doi.org/10.30649/je.v4i2.114Keywords:
Fast Fourier Transform, Motor Induksi, Outer Race Bearing, Sinyal SuaraAbstract
Pemakaian motor secara terus menerus akan menyebabkan kerusakan. Deteksi kerusakan penting dilakukan untuk menghidari kerusakan parah, menekan biaya perawatan dan menjaga keandalan motor. Penggunaan motor tidak bisa lepas dari perubahan kecepatan karena disesuaikan dengan kebutuhan pengguna. Pada saat motor beroperasi akan menghasilkan suara yang menggambarkan kondisi kesehatannya. Penelitian ini bertujuan untuk pengembangan system deteksi kerusakan bearing berdasarkan sinyal suara dengan variasi kecepatan. Pengolahan dan analisis data menggunakan pendekatan analisis spectrum. Perubahan kecepatan akan berpengaruh pada frekuensi putaran sehingga akan berpengaruh kepada diagnosis kondisi elemen motor. Dengan mengamati lonjakan amplitude pada spectrum suara maka akan diketahui kondisi kesehatan motor. Pendekatan Analysis of Variance (ANOVA) digunakan sebagai pendekatan untuk menentukan pengaruh variable speed terhadap akurasi deteksi. Untuk mempercepat proses diagnosis pengembangan system dilakukan secara real-time menggunakan mini PC raspberry sehingga hasil diagnosis dapat dilakukan dengan cepat tanpa membutuhkan waktu lama. Signifikansi dari penelitian adalah sistem deteksi kerusakan yang dibahas memberikan solusi monitoring kondisi bearing yang sederhana, murah, cepat dan akurasi tinggi sehingga tindakan perawatan motor dilakukan tepat waktu. Hasil penelitian mencapai akurasi diagnosis sebesar 93.75%.
References
R.N. Toma, A.E. Prosvirin, J.M. Kim. ”Bearing Fault Diagnosis Of Induction Motors Using A Genetic Algorithm And Machine Learning Classifiers”. Sensors, 20 (7), 1884. 2020.
C. Malla and I. Panigrahi. “Review Of Condition Monitoring Of Rolling Element Bearing Using Vibration Analysis And Other Techniques”. Journal of Vibration Engineering & Technologies, 7(4), pp.407-414. 2019.
W.J. Lee, K. Xia, N.L Denton, B. Ribeiro & J.W. Sutherland. “Develop-ment Of A Speed Invariant Deep Learning Model With Application To Condition Monitoring Of Rotating Machinery”. Journal of Intelligent Manufacturing, 32(2), pp. 393-406. 2021.
M. Karami, N.B. Mariun, M.Z.A. Ab-Kadir, N. Misron and M.A. Mohd Radzi. “Motor Current Signature Analysis-Based Non-Invasive Recognition Of Mixed Eccentricity Fault In Line Start Permanent Magnet Synchronous Motor”. Electric Power Components and Systems, 49 (1-2), pp.133-145. 2021.
A. Choudhary, T. Mian, and S. Fatima, 2021. “Convolutional neural network based bearing fault diagnosis of rotating machine using thermal images”. Me-asurement, 176, p.109196. 2021.
T. Mohanraj, S. Shankar, R. Rajasekar, N.R. Sakthivel and A. Pramanik. ”Tool Condition Monitoring Techniques In Milling Process A Review”. Journal of Materials Research and Technology, 9 (1), pp.1032-1042. 2020.
D. Goyal, C. Mongia and S. Sehgal. “Applications Of Digital Signal Processing In Monitoring Machining Processes And Rotary Components: A Review”. IEEE Sensors Journal, 21(7), pp.8780-8804. 2021.
D.K. Saha, S. Ahmed and M.S. Shaurov. “Different Machine Maintenance Techniques of Rotary Machine and Their Future Scopes: A Review”. In 2019 4th International Conference on Electrical Information and Commu-nication Technology (EICT) (pp. 1-6). IEEE. 2019.
A.K. Sinha, P. Kumar and A.S. Hati. “ANN Based Fault Detection Scheme for Bearing Condition Monitoring in SRIMs using FFT, DWT and Band-pass Filters”. In 2020 International Confe-rence on Power, Instrumentation, Control and Computing (PICC) (pp. 1-6). IEEE. 2020
Y.J. Yoo. “Fault Detection Of Induction Motor Using Fast Fourier Transform With Feature Selection Via Principal Component Analysis”. International Journal of Precision Engineering and Manufacturing, 20 (9), pp.1543-1552. 2019.
N. Sikder, K. Bhakta, A. Al Nahid and M.M. Islam. “Fault Diagnosis Of Motor Bearing Using Ensemble Learning Algorithm With FFT-Based Prepro-cessing”. International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST) (pp. 564-569). IEEE. 2019.
F. Alvarez‐Gonzalez, A. Griffo and B. Wang. “Permanent Magnet Synchro-nous Machine Stator Windings Fault Detection By Hilbert–Huang Trans-form”. The Journal of Engine-ering, 2019 (17), pp.3505-3509. 2019.
T. Gao, W. Sheng, M. Zhou, B. Fang, F. Luo and J. Li. “Method For Fault Diagnosis Of Temperature-Related Mems Inertial Sensors By Combining Hilbert–Huang Transform And Deep Learning”. Sensors, 20 (19), p.5633. 2020.
M.E.A Khodja, A.F. Aimer, A.H. Boudinar, N. Benouzza and A. Bendiabdellah. “Bearing Fault Diagnosis Of A PWM Inverter Fed-Induction Motor Using An Improved Short Time Fourier Transform”. Journal of Electrical Engineering & Technology, 14(3), pp.1201-1210. 2019.
Y. Du, A. Wang, S. Wang, B. He and G. Meng. “Fault Diagnosis Under Variable Working Conditions Based On STFT And Transfer Deep Residual Network”. Shock and Vibration, 2020.
C.T. Alexakos, Y.L. Karnavas, M. Drakaki and I.A. Tziafettas. “A Com-bined Short Time Fourier Transform And Image Classification Transformer Model For Rolling Element Bearings Fault Diagnosis In Electric Mo-tors”. Machine Learning and Knowledge Extraction, 3 (1), pp.228-242. 2021.
Y.M. Hsueh, V.R. Ittangihal, W.B. Wu, H.C. Chang and C.C. Kuo. “Fault Diagnosis System For Induction Motors by CNN Using Empirical Wavelet Transform”. Symmetry, 11 (10), p.1212. 2019.
M.A. Hmida, A. Braham. “Fault Detection Of VFD-Fed Induction Motor Under Transient Conditions Using Harmonic Wavelet Transform”. IEEE Transactions on Instrumentation and Measurement, 69 (10), pp.8207-8215. 2020.
H. Nakamura, K. Asano, S. Usuda and Y. Mizuno. “A Diagnosis Method Of Bearing And Stator Fault In Motor Using Rotating Sound Based On Deep Learning”. Energies, 14 (5), p.1319. 2021.
N.W. Nirwan, H.B. Ramani. “Condition Monitoring And Fault Detection In Roller Bearing Used In Rolling Mill By Acoustic Emission And Vibration Analysis”. Materials Today: Procee-dings, 51, pp.344-354. 2022.
M.R. Barusu, M. Deivasigamani. “Non-Invasive Vibration Measurement For Diagnosis Of Bearing Faults In 3-Phase Squirrel Cage Induction Motor Using Microwave Sensor”. IEEE Sensors Journal, 21 (2), pp.1026-1039. 2020.
P. Ewert, C.T. Kowalski and T. Orlowska-Kowalska. ”Low Cost Moni-toring And Diagnosis System For Rolling Bearing Faults Of The Induction Motor Based On Neural Network Approach”. Electronics, 9 (9), p.1334. 2020.
P. Gangsar and R. Tiwari. ”Signal Based Condition Monitoring Techniques For Fault Detection And Diagnosis Of Induction Motors: A State-Of-The-Art Review”. Mechanical systems and signal processing, 144, p.106908. 2020.
A. Burova. “Reducing The Error Of Digital Algorithms For Deductive Signal Processing Based On Their Multi-Stage Discrete Fourier Transform By The Difference Digital Filters”. In 2020 22th International Conference on Digital Signal Processing and its Applications (DSPA) (pp. 1-3). IEEE. 2020.
M.N.S.K. Shabbir, X. Liang, S. Chakrabarti, S. “An ANOVA-Based Fault Diagnosis Approach For Variable Frequency Drive-Fed Induction Motors”. IEEE Transactions on Energy Conversion, 36 (1), pp.500-512. 2020.
A. Klausen, H.V. Khang and K.G. Robbersmyr. “Multi-Band Identification For Enhancing Bearing Fault Detection In Variable Speed Conditions”. Mechanical Systems and Signal Processing, 139, p.106422.2020.
Y. Hu, X. Tu, F. Li, H. Li and G. Meng. ”An Adaptive And Tacholess Order Analysis Method Based On Enhanced Empirical Wavelet Transform For Fault Detection Of Bearings With Varying Speeds”. Journal of Sound and Vibration, 409, pp.241-255. 2017.
T. Ameid, A. Menacer, H. Talhaoui and Y. Azzoug. “Discrete Wavelet Trans-form And Energy Eigen Value For Rotor Bars Fault Detection In Variable Speed Field-Oriented Control Of Induction Motor Drive”. ISA Transactions, 79, pp.217-231. 2018.
J. Park, M. Hamadache, J.M. Ha, Y. Kim, K. Na, B.D. Youn. “A Positive Energy Residual (PER) Based Planetary Gear Fault Detection Method Under Variable Speed Conditions”. Mechanical Systems and Signal Processing, 117, pp.347-360. 2019.
L. Wang, J. Xiang and Y. Liu. “A Time–Frequency-Based Maximum Correlated Kurtosis Deconvolution Approach For Detecting Bearing Faults Under Variable Speed Conditions”. Measure-ment science and technology, 30 (12), p.125005. 2019.


